Shifting Left

Designing Code, Breaking Code, and the Verification in Between

by Amelia Dalton

 

Feed It Forward (And Back)

KLA-Tencor Helps Accommodate Variation

by Bryon Moyer

The Americans with Disabilities Act (ADA) had resulted in marked improvements in his ability to access the people and places and resources that normatively-abled people took for granted. Curb cuts, wider paths, and ramps instead of stairs all meant that his wheelchair could go much farther than was previously possible.

But it wasn’t perfect. A cozy coffee shop might, for instance, have only a few tables near the entrance that a wheelchair could reach. They weren’t “handicapped only” tables; they were just near the door, and the tables farther in were too close together to allow passage.

So it was common for him to arrive, only to find that the tables that he could use were occupied (even while tables in the back were empty). In which case he had either to wait or to move on.

 

A Self-Sufficient Sensor Node

An OMRON Harvester Powers Imec Circuits

by Bryon Moyer

We recently took a look at one side of vibration: the side that uses it to diagnose nascent illness in manufacturing equipment. And I hinted at a second side, which is what we’ll look at today. The previous discussion was about detecting and decoding vibrations. This one will be about leveraging vibration to harvest energy.

Yes, not a new concept, and we’ve talked about it before, but our prior focus has largely been on piezoelectric solutions. Not so today.

Our focus this time will be on a joint project involving an energy harvester from OMRON and the rest of the system from Imec. We’ll start with the MEMS harvester and then look at how that energy gets managed.

 

Going Vertical

Ecosystem for Interposer-based Design?

by Kevin Morris

We’ve talked a lot lately in these pages about the impending demise of Moore’s Law. Consensus is that, somewhere around the half-century mark, one of the most astounding prophecies in human history will have finally run its course. Next year, we’ll have a round of FinFET devices that will be so exotic and expensive that only a handful of companies will be able to use them. In the decade that follows, we may or may not reach 10nm and 7nm production - using either esoteric unlikelies like EUV or extreme-brute-force multi-patterning techniques - to solve just some of the multitude of barriers to continued downscaling.

Sci-fi techniques like carbon nanotubes, graphene-based devices, quantum computing, and that other-one-you-read-about are so far from production practicality that we may not see any of them in widespread use in our lifetimes. While incredible research shows great promise for many of these ideas, they are all back in the silicon-equivalent of the early 1960s in their evolution. The time and engineering it will take them to catch up with and eventually surpass what we can do with silicon today is substantial.

 

On The Hunt: Part One

HLS and Sub-atomic Particle Jitter

by Amelia Dalton

Dateline: The 5th of September. Time: 2100 hours. We're on the hunt. No, we’re not hunting the mysterious Yeti, the Loch Ness monster, or heck even the ever-elusive EUV. This time, we're looking for some HLS. My guest this week is Mark Milligan from Calypto. Mark joins Fish Fry for the very first time to bring HLS into the light, into the world, and into the caring hands... of Google? Oh yes. Also this week, we delve into the deeply nerdy realm of sub-atomic particle jitter and investigate how the U.S. Department of Energy's Fermi National Accelerator Laboratory is hoping to solve an age-old existential question: How many dimensions do we really live in? (Spoiler alert: The space-time continuum may actually be a quantum system made up of countless tiny bits of information.)

 

¡Viva el Nodo de 28nm!

The Impact of the Longest Lived Semiconductor Node

by Bruce Kleinman, FSVadvisors

We’ve spilled a lot of ink on 14/16nm FinFET here at EE Journal. It is exciting stuff: bleeding-edge process technology and a fabulous new transistor structure; heck, it’s 3D without the glasses. There is no doubt that FinFET will be a difference maker in some high-profile products. As reality sets in, however, there is growing doubt with regards to the breadth of FinFET applicability. FinFET will make the transition from bleeding-edge to leading-edge, but it may not make the transition to mainstream anytime soon … perhaps never.

FinFETs certainly sound golden. Like most golden developments, there is a catch: FinFETs require more complex process technology than planar FETs, and, coupled with the mind-numbing 14/16nm geometries in play things get really, really complicated. We are talking quite literally about the most complex undertaking in the history of mankind, all hyperbole checked at the gate. And while that has tremendous cachet amongst us Silicon Valley types, unfortunately, it makes for expensive chips.

 

The Overachieving Middle Child

MIPS I6400 Introduces 64-bit to the Midrange

by Jim Turley

“Bifurcate” is a word you don’t get to use very often. Yet it’s a familiar concept in our industry. Mobile operating systems have bifurcated into the choice between Android and iOS. On the desktop, it’s Windows or MacOS. Verizon or AT&T. Home Depot or Lowes. ARM or x86.

In all of these cases, the big pie chart is pretty much equally divided between two major players, with a thin sliver of “other.” In the desktop environment, the “other” slice of the pie includes Linux: it’s there, but it’s not really used by normal people and doesn’t really compete on the same footing as Windows or MacOS. The mobile OS market includes BlackBerry and Windows Phone, among others, but in the big banquet of life they’re relegated to the kids’ table.

 

Cheap Chips

ASICs for the Rest of Us

by Dick Selwood

We all know the story: ASIC starts are falling as the costs of the design tools, the mask sets and the manufacturing process are all going through the roof. Don't even think about starting an ASIC design unless your budget is measured in millions of dollars. The development process is going to require a large team of engineers. The only way you can make money with an ASIC is to sell many hundreds of thousands of devices, and that normally implies consumer markets. But ASICs take months to years of development – a development cycle that can be longer than the product life of a consumer product, which is typically measured only in months.

But over the last few weeks, I have been talking to people who will happily talk about ASICs that cost only tens of thousands of dollars to design and begin to manufacture, and have a return on investment measured in months. How come there is such a huge difference?

 

A Horse of a Different Color

Advanced vs. Established Process Geometries

by Amelia Dalton

It's time to saddle up and ride into the semiconductor sunset! Whether you're hitchin' your wagon to a young whipper-snapper node, or lassoin' a long-in-the-tooth workhorse process, the time it takes to get your IC design up and out of the corral may depend more on the software you use to verify your design than on the silicon itself. In this week's Fish Fry, Mary Ann White (Synopsys) and I get down to the very heart of semiconductor design: process geometries. We have ourselves a good ol' time chatting about challenges of FinFET designs, the tricky bits of working with both advanced and established process nodes, and how the right tools can make all the difference when it comes to winning the big product-to-market rodeo.

 

Middle Child Syndrome

Is 20nm the Forgotten FPGA Node?

by Kevin Morris

28nm is a calm, mature node. Sure, everyone was excited when it was the first to reach modern price, performance, and cost levels. We applauded when ARM processing subsystems were integrated into 28nm FPGAs, creating a new class of device. And there were accolades when 28nm debuted interposer-based 2.5D packaging techniques. There is even a nice page in the scrapbook where 28nm SerDes transceivers hit 28Gbps speeds - a nice 28/28 symmetry that made everyone feel all warm and fuzzy.

We all know and love 28nm. It’s out there - proven and in full production, making our real-world designs really work today. It’s great! You really can’t go wrong with any of Xilinx’s or Altera’s robust 28nm offerings - from cost-optimized, higher-volume Kintex and Arria chips up to the biggest, fastest, most feature-laden Virtex-7 and Stratix V devices, 28nm FPGAs have you covered.

« Previous123456...40Next »

subscribe to our semiconductor/ic newsletter


Login Required

In order to view this resource, you must log in to our site. Please sign in now.

If you don't already have an acount with us, registering is free and quick. Register now.

Sign In    Register