Back to Editors' Blog

Engineering GaN Wafers

by Bryon Moyer

February 02, 2012 at 12:46 PM

We talked before about wide bandgap materials such as GaN and SiC, but how are the base wafers for those materials created? Full wafers of expensive material would be, well, expensive. But if you grow or somehow affix the material on a base material of some other sort, you run the risk of having thermal issues at the boundary (at the very least).

Sumitomo and Soitec announced a joint approach recently that provides a GaN layer on top of some other substrate. The key is that this substrate is thermally matched to GaN. Of course, when I inquired as to the nature of the material, I found it was this mystery material that seems to be common to a huge number of projects: the material is called “proprietary.”

The method of creating the GaN on top of this takes a page from how Soitec creates SOI base wafers, with their SmartCut process. If you haven’t heard about it before, it’s interesting. The concept is that, in this case, Sumitomo sends them a pure GaN wafer. Soitec provides the base and then slices off a thin layer of GaN and affixes it to the base wafer. So one GaN wafer gets sliced many many times and ends up serving a large number of actual used wafers, stretching the GaN material as far as it will go.

So you might wonder, how do you slice off such a thin layer? Here’s what they do: first they implant hydrogen into the top of the GaN wafer down to the thickness of the layer they want to cut off. They then turn this wafer upside down and affix it to the base wafer, so now you have two wafers bonded together face-to-face.

They then use heat to create bubbles at the layer where the hydrogen is; this causes cracking along that seam, and the GaN bulk wafer comes off, leaving just the thin layer attached to the new base material. A little spit and polish and you’re good to go.

They had done this with 2” wafers before; their recent announcement demonstrates scaling to 4” and 6” wafers. You can find more in their release.

Channels

Semiconductor.

 
    submit to reddit  



Please add a comment

You must be logged in to leave a reply. Login »

Related Articles

chipKITs and JPEGs

IP in Space and Open Source Board Buildin

by Amelia Dalton

It's time to break out the sparklers, an arc welder or two, and your best space suit - Fish Fry is here to celebrate! We're...

Crossbar RRAM Tweaks Nonvolatile Memory

Unique Resistive Technology Set to Challenge NAND Flash

by Jim Turley

I gotta say, memory chips are boring.

And thats coming from a guy who lives and works in the chip business. Sure, I...

When Intel Buys Altera

Will FPGAs Take Over the Data Center?

by Kevin Morris

At the Gigaom Structure 2014 event last week, Intels Diane Bryant announced that Intel is integrating [Intels] industry-leading Xeon processor with a coherent FPGA...

Lets Get Small, v3.0

New MEMS Accelerometers from mCube are Worlds Smallest

by Jim Turley

Most startups have no product. This one has shipped 60 million products before coming out of stealth mode.

Say hello to mCube, probably the most...

Surround-By-Cobalt

Applied Materials Introduces a New Metal

by Bryon Moyer

Metal has always been a bit messy. Even in the old days, when we laid metal lines over the rough terrain that resulted from various...


Login Required

In order to view this resource, you must log in to our site. Please sign in now.

If you don't already have an acount with us, registering is free and quick. Register now.

Sign In    Register